Classical Error Correction

Resources:

| advise Arthur Pesah's blog post on classical error correction

() and the Hamming code pair
of videos from 3BluelBrown on Hamming code ()
complementary to this lecture.

Deeper knowledge on information theory and classical error correction can be found in
Information Theory, Inference, and Learning Algorithms, by David McKay.

Introduction with repetition code

Let's assume that we have a noisy classical system which encodes information on bits and
which is used to transfer classical information from Alice to Bob.

Each bit can suffer a bit flip with a probability p which we assume to be small: p < 1, but Alice
want to transfer information to Bob faithfully (with error probability < p for example).

How can she proceed?
One natural way to tackle this problem is to encode her classical information redundantly onto
multiple physical bits, using what we call a repetition code.

The logical information that she wants to transfer is i, = 0z, or 1, (I am using the subscript L to
denote that this information is logical).

She encodes it into n physical bits:
ip =11...19
For example if n = 3, 0, = 000 and 17 = 111.

She now transfer all these n bits to Bob.
Yet, these bits can suffer noise with probability p.
We assume that the noise corresponds to a bit flip: ¢ — 1 — 4.

I —p
P

1 > 1
I —p

Therefore Bob can receive multiple bit strings.
Assume that Alice have sent 0, = 000 (n = 3). Bob can receive:

000 with probability (1 — p)® ~ 1 — 3p
001, 010, 100, each with probability p(1 — p)? ~ p. These results corresponds to having
exactly one error

https://arthurpesah.me/blog/2022-05-21-classical-error-correction/
https://www.youtube.com/watch?v=X8jsijhllIA

110, 101, 011, each with probability p?(1 — p) ~ p?. These results corresponds to having
exactly 2 errors

111 with probability p3. This corresponds to having exactly 3 errors.

Note that Bob does not know whether Alice have sent 0, or 1, the last two results could very
well corresponds to Bob receiving 1;, = 111 and having no errors or receiving 110, 101, 011,
and having exactly one error.

Bob's decoding strategy is thus to identify the most likely error and extract information
accordingly. In this case, Bob will rule the first two types of results (000, 001, 010, 100) as
coming from 0z and the last two types of results (111, 110, 101, 011) as having received 1;. He
uses a decoding strategy that fits well with the repetition code under the bit flip model which is
called a majority vote.

In doing so, Bob could still make an error, that will affects the logical qubit, but this logical error
has probability:

pr = 3p*(1 — p) + p° =~ 3p

If pr, < p, which is the case whenever p < 1, the logical error is smaller than the physical error
and Bob receive information in a much more reliable way.

Important remarks:

The repetition code performance depends on the number of physical bits.
It also depends on the error model being used.

The decoding strategy depends on the code being used

The strategy is summarized in

B) Result
Message — neode — Noise > Decode —>
m c=Gm c y=che y=c Failure é # ¢
Message 0 | Rep. Code 000 - Bitflip 010 »-{ Majority vote 010~ 111 -
1 111 e=010 101 101 — 101
00
11
Bitflips 101 .. 101 +— 111 .
»| Majority vote > Failure
e =101 010 Jory 000 — 000 v
Exercises:

Given a n bit repetition code. What is the probability of having exactly m errors?

How many errors can we correct with this code?

Assuming that we have n = 3, and an amplitude damping error model (0 — 0, 1 — 0) with
probability p. What is the probability of having a logical error?

Can you summarize the new decoding strategy that you've used?

Assuming that we have n = 3, and an erasure error model (0 — 0, 1 — @) with probability p.
What is the probability of having a logical error?

With this erasure error model, having an n-bit repetition code, how many erasure can we
correct?

(Amplitude damping model)

1
0 > ()
P
1 >]
I —p
(Erasure model:)
I —p
0 _ > ()
P
0
P
1 >]
I —p

P(m) = (")p™(1—p)" ™

We can correct up to | (n — 1)/2] errors with the majority vote

If the logical information is 0y, there's no possible errors. If 11, the probability of having an
error is p3.

If there's a 1 somewhere on the physical qubits, the logical information is decoded to 1,
The probability is again p3.

in general p™.

The repetition code provides good intuition on how a code is working, but it is far from the best
we can do with classical coding theory. In the following, we will briefly present it in a more

mathematical way.

Basics of coding theory.
We consider here binary linear codes:

binary: means that information is encoded onto bits

linear: means that if c and ¢’ are valid encoded information ¢ & ¢’ is also in the code.
These are restrictions: not all codes are binary (we can encode information onto dits and
use error correcting codes on dits) and we can also have nonlinear codes (

{1, =110,0;, = 001} is a small example of a nonlinear code).

Bits:

We consider a bit to be an element of 5, the Galois field of two elements {0, 1}.
It has two operations, an addition modulo 2:

1@j=1+j mod 2,
000=0, 160=001=1, 161=0,
and a multiplication:
0.z=0, lz==.

Additionnally a n-bit bitstring will be a vector ¢ = (i, ¢1,...,in—1) € F2" and the bitwise addition
gives:

i1@®7= (10D 70,01 D J1,---0n-1D Jn-1)

We also define some mathematical object that will be useful later:
The bitstring's weight:

w:Fy" — N
n—1
c=(coy...,cn-1) = w(c) = Zci
=0

which is essentially counting the number of 1s in a bitstring.

And the bitstring distance:

d:Fy" x Fy™ s N
c,c' —d(e,c) =w(cd)

In all generality, codes does not need to be defined on binary fields. It can for example be on q-
ary fields with I¥ .

Bitstring spherel balls:

A sphere of radius r € N and center b € F,", is the set of all the bitstrings that differ from b
by exactly r bits:

S(b,7) = {b' € Fy|d(b,b') =}

A ball of radius r € N and center b € Fy", is the set of all the bitstrings that differ from b by at
most r bits:

B(b,7) = {b' € F2"|d(b,d") < r}

We have the following properties

and

since

B(b,r) =1._,S(b,7")
Error correcting codes

Definition: Linear error correcting code

A linear classical error correcting C is a map from F,* to F,™ (with n > k). This map can be
represented by a k x n generator binary matrix G € F,**":

C:ngHFQn
m — ¢ = C(m) =mG

m € Fy" is usually called the message.
c € Fy" is usually called the codeword.

Such a code C, thus encode the k-bitstrings into larger n-bitstrings in such a way that we can
identify errors.

Im(C) = {C(m)|vm € Z;"} = C (F>")
defines the subspace of all valid codewords.
Definition: Parity check matrix

We can define a parity check matrix H € F,"*", of rank n — k, that nullifies the code's subpsace:

Im(C) =ker H = {c € Fy"|Hc = 0}.

(We will be a bit loose on notations for bitstrings where c € F2", will be either considered as a
vector row or column... For example, c = mG suggest that c is a row vector, while Hc =0
suggests that c is a column vector. So strictly speaking we should write Hc™ = 0...)

(If » > n — k some rows of H can be written as linear combinations of n — k others. Therefore,
in practice if we restrict to these n — k rows, we still have Im(C) = ker H, and we can restrict
ourselves to taking r = n — k.)

Usually we abusively identify the code's subpsace with the code itself, Im(C) ~ C. We will do
this as well in the following. Under this assumption, a code is entirely defined by its parity check
matrix.

The parity check matrix is quite interesting as it will help identify errors.
Indeed assuming that ¢ € C is a valid codeword and assume that e € F»" is some error afflicting
the bitstring, the noisy bitstring ¢ = ¢ & e can be multiplied by the parity check matrix:

Hé¢=H(c®e)=Hc® He = He = s.

Here, we have used the fact that Hc = 0 for any valid codeword.
s = He is called the syndrome of an error, it corresponds to the information about an error
acting on our codewords.

Note that if He = 0, e is itself a valid codeword and cannot be detected, nor corrected.
An important figure of merit of a code C'is its Hamming distance.

Definition: (Hamming) distance of a code

The (Hamming) distance of a code is the minimum weight of an undetectable error. It is given
by:

dg : C — min [d(c,c)|Ve # ¢’ € CQ]

Any error e that has a weight strictly below the code's distance, e < dg, leaves a non-zero
syndrome: He = s # 0. The error is detectable.

Code terminology

A code thus encode k logical bits into n physical bits to detect any error of weight below dg.
This code is usually represented with the compact notation "[n, k, d|".

n is the number of physical bits, also called the code's length
k is the number of logical bits, also called the code's dimension.

d is the Hamming distance of the code (or simply the code's distance for short).

We can also define the code's encoding rate R = k/n which is the ratio between the number of
logical and physical bits.

0 = d/n is also a relevant number called the code's relative distance.

Dual codes

Given a code C, with generator matrix G and parity check matrix H, any codeword ¢ € C can be
written as ¢ = mG and we have Hc = 0.
Therefore,

HG" =0
Note that if we take the transpose of this equation, the roles of H and G are interverted,
GHT =0,

suggesting the existence of another code with parity check matrix G and generator matrix H.
This code is the dual code C*.

Canonical form:

Given a parity check matrix H, we can find a generator matrix G of the form:

with P a full-rank matrix. This block form is known as the canonical form of a code. The
additional n — k matrix are sometimes called the parity bits

Similarly, H can be made in a canonical form:
H=(PT I.4),

(On g-ary fields, F, with q # 2, it would be H = (—PT I,_4), but for binary fields —PT = PT)
Definition: A family of code.

A family of code F = {C,, C F,"},¢; is a collection of codes of increasing length indexed by
some set I C N with a uniform rule (a single algorithmic or mathematical procedure) to
construct all the codes.

If the set I is not bounded, it is an infinite family of codes and we can define asymptotic
behaviors, in particular, the asymptotic encoding rate and relative distance scaling:

Ry, = lim (R, = k/n)

0o = T}g&(% =d/n)

Exercise:

What is the encoding matrix and the parity check matrix of the 3-bit repetition code ?

Is

1 1
H=|0 1
1 1

S = O

a valid parity check matrix of the 3-bit repetition code?
3. Generalize to n-bit repetition code ?
4. What is the asymptotic rate and relative distance of the repetition code?

In the case of the 3-bit repetition code, the generator matrix is
G=(01 1 1)

The parity check matrix of the 3-bit repetition code is

1 1 0
H= (0 1 1)
Tanner graph of a code

A visual representation of a code is given by its Tanner graph. The Tanner graph

T(C)= (DUC,E) is abi-partite graph (E C (D x C)). Its vertex set is composed of the data bit
set D (with |D| = n), and check set C (with |C| = n — k). Its bi-adjacency matrix is the code's

parity check matrix H. This means that:

Vde D ~ZnNc€C~Zlpnyg, (dc)e E< Heq=1.

In other words, the D set corresponds to data bits, i.e. the columns of the parity check matrix,
and the C set corresponds to the rows of the parity check matrix, that is the constraints that
needs to be fulfilled by the code. There's an edge between a data bit and a check if the check

acts non trivially on this data bit.

Here's the Tanner graph of the 3-bit repetition code:

-0

-1

Exercise Hamming code

Cp

21 Co

In this picture, the nodes corresponds to the physical bits, and the circles to check constraints:
the sum (mod 2) of all the bits within the same circle should be equal to zero.

Can you write the parity check matrix of the Hamming code?
Cannonical form?

Can you draw its Tanner graph?

What is the code's length? Its dimension?

Can the following matrix be the generator matrix of the Hamming code.

o = O O
= o O O
=
=

1
1
0
1

o O O =
oS O = O

Assuming we have a syndrome He = s = (0,0, 1). What is the most likely error (assuming
a bitflip error model)?
The distance of this code is 3, what's the minimum number of errors it can detect?

/ Correction

—
o O
—

We can put it in the canonical form:

1 1 00
1 010
1 0 01

[n=7, k=4] (the cannonical form ensure that the check matrix is of rank n — k = 3)
Nope HGT # 0

e =(0,0,0,0,0,1,0)

1 bitflip

Noise models

In coding theory, noise is modelled by a channel which is a probabilistic mapping that takes a
bitstring and output a noisy bitstring.

N : Fy™ i Prob(F,"] (or Prob[{0,1,0}"])
z > Pyle)

It is given by a set of conditional probability distributions that links the output words to the input
words.

The case where the output words include @ corresponds to erasure and will be treated
separately.

Such that:

Y plylz) =1, pyle) 20

yeF"
The channel takes input z and outputs y according to the probability distribution P(y|z).
Symmetric channel

A channel is symmetric if there exists a probability distribution p(e) over F," such that for all
input Vz € F,™ and outputs Vy € Fy™:
p(ylz) = p(y @ x) = p(e)

where the error vector e = y @ z is independent of x.

Memoryless channel:

If Vy,z € Fo"

p(ylz) = [[pluile)

1=1

The channel is said to be memoryless. Otherwise it is said to be correlated.
Examples of channels

Binary Symmetric channel

The binary symmetric channel is the memoryless channel (p(y|z) =[]}, p(yi|x;))
where each bit experience a bitflip with probability p:

Vi€ Zy, plyi=z;®1llz;))=p, plyi=ziz;))=1-p
This is described by this graph:
Il —0p
P

1 > 1
I —p

This is a symmetric channel

Amplitude damping channel

The amplitude damping channel is the memoryless channel (p(y|z) = [[}_; p(vi|z;))
where each bit experience an amplitude damping (1 — 0) with probability p:

Vi€ Z,, p(0]1)=p, p(1]1)=1-p, p(0/0)=1, p(1]0)=0

This is described by this graph:

1
0 > ()

P
1 > 1
I —p

This is not a symmetric channel, the error depends on the input

Erasure channel

The erasure channel is the memoryless channel (p(y|z) =[]}, p(vi|zi))
where each bit experience an erasure (loss of information b — (@) with probability p:

Vi€ Zn, p(yi=0lz:) =p, pyi=zilz;)=1-p, plyi=z;®1lz;)=0
This is described by this graph:
I —p

0 _ > ()
P

P
1 > 1
I —p
Interestingly, we can see that if we obtain a value y; = (0, we had input z; = 0 or z; = 1 with
identical a priori probability p = 1/2, so we have "erased" the information of the :*® bit, hence
the name erasure. What is important is that we know the location of this bit erasure: it is on the
i*® bit and we can leverage this information to decode more accurately the error

Decoding

The general problem setting of the decoding problem is the following: Alice send a message m
encoded into a codeword ¢ = Gm. The message is sent through a noisy channel A to Bob who
receives the noisy word y = ¢ @ e where e is the error. To retrieve this message, Bob needs to
find the most likely message m that Alice could have sent him given that he received y:

Dur an —> an
y > &= Dy (y) = argmax [p(c'|y)]

ceC
He succeeds if ¢ = c.

If the error e is independent of the input word, the noise is said "symmetric" and the problem
can be considered only looking at the parity check matrix. Note that this isn't the case for other
types of noise such as amplitude damping errors which are acting differently on different input
words: p(e ® ¢ = N(c)|c) # p(e)

Here, we briefly introduce the decoding problem. Assume that we have a noisy codeword c @ e
that leads to a syndrome s = He, under the binary symmetric channel.

First we should note, that multiple errors could lead to the same syndrome:

s =He= He' fore # €.

Therefore, in general it is impossible to identify and correct unambiguously an error.

In practice, errors occurs with a probability p(e) (p(e) is the probability that the bitstring error e
occurs). The best guess is thus to find the error with the largest probability that led to the
syndrome s. The most efficient decoder is thus the following maximum likelihood decoder:

Dy Fy % s Ty

s+ é=Dyp(s) = arg max [p(e)|] s = He]
eclF,™

The maximume-likelihood decoder is in general NP-Hard, so in practice, we approximate it with
more efficient decoders: D : F," % — Fy™.

Note that e & D(e) is a valid codeword since H(e ® D(e)) = He ® HD(e) = s ® s = 0.

The decoder successfully identify an error if:
e ® D(e) = 0 thatis e = D(e).

In that case, the noisy bitstring ¢ & e is mapped back into the correct codeword by applying D(e)
to the noisy bitstring: c® e ® D(e) = c.

In the erroneous case, the noisy codeword ¢ & e is mapped to another valid codeword
¢ =c®edD(e) # c. The physical error has been converted into a logical error.

For an error model corresponding to having each bit being flipped with same probability p, the
largest weight ¢ = w(e) of an error that can always be corrected by the ML decoder D, is
linked to the Hamming distance dy : t = |[(d — 1)/2].

We therefore see that the Hamming distance is an important figure-of-merit of a code.

Exercise:
We will prove this statement:

Under binary symmetric noise channel (bitflip errors) with noise probability p < 1/2, what is
the probability corresponding to a given n-bitstring error e?

How does this relate to the weight w(e)? Given two errors e and e’ with weights w(e) < w(e’)
which one is a priori the most likely?

Show that under the binary noise channel, the decoder can be rewritten as a function of
w(e):

If an error e, with syndrome s, has weight w(e) <t = |(d — 1)/2], what is the smallest
weight of another error with identical syndrome s ?

Conclude.

\ Correction
Memoryless

ple = (o, ---en 1)) = [175 p(e;) with Vi, p(e; = 1) = p, p(e; = 0) = (1 - p)
So T}y ples) = p*) (1 — p)"
There's w(e) ones in e (and (1 — w(e)) zeros in e).

Therefore, p(e) = p¥(©) (1 — p)n—wle),
2. For p < 1/2, p(e) is a decreasing function of w(e), the more weight, the more unlikely the
error: w(e) < w(e') < p(e) > p(e')

3.

Dyr : an_k — "
s+—e=Dyr(s) = arg max [p(e)| s = He]
ecFy"

since w(e) < w(e') < p(e) > p(e),

Dyrr(s) = arg m%r}1 [lw(e)| s = He]
eclis

Decoders that solve this optimization problem is called a Maximum A Posteriori (MAP) decoder.
4. Let ¢’ # e be an error with syndrome He' = He = s, Therefore ¢’ & e # c is a valid codeword.
The code's distance is d so d(e’ @ e,0) = w(e® e') = d(e, e’) > d. Given that d is a distance
d<wlede) <w(e)+w(e) and thus w(e') >d —w(e) >d—t >t

5. Any error with weight ¢ or lower is the smallest weight error and will be decoded. The decoder
correct any errors of weight ¢ or lower.

Definition: Support of a bitstring
Supp(e) = {i € Zyle; = 1}

An erasure is an error at a known location. On top of the syndrome, we know that the support of
the error is included in a set E:

Supp(e) C E

We can thus exploit this additional information to use a more efficient maximum likelihood
decoder for erasures:

Dl (s,) = arg max [p(e)|s = He, Supp(e) C F]
eclis

This erasure maximum likelihood decoder work for any erasures of less than dg — 1 bits (
|E| < dg —1).

Bounds / Trade-offs in error correction

Singleton bound

For any error correcting code [n, k, d], the Singleton bound is an upper bound on the dimension
of an arbitrary code block:

2k < 2n7d+1

Sok<n-d+1

And we cannot increase both the rate k£/n and the distance of the code independently. There's
a trade-off between the two.

/ proof

There are 2" different n-bitstring. Let C, be a code with parameters [n, k, d].

By puncturing (removing) the first d — 1 bits of this code, we should obtain a new code C’ with
parameters: [n' =n — (d — 1), k' = k,d’ > 1] with similar size. The new codewords have length
n — d + 1 and thus there should be at most 2"~¢*! of them. Since the dimension of the code is
the same, there are 2* codewords, we should have the inequality.

Hamming bound

For any error correcting code C, there's a fundamental bound on its code's parameters [n, k, d]:

t
n
ok < on
> (n) <

with

t = {EJ
2
A code for which the Hamming bound is tight (k an:o (Z) = 2"), is called a perfect code.

/ Proof

A code is capable of decoding t errors with maximum likelihood decoding.

Let's consider balls of radius ¢t centered on each codewords: B(c,t) = {b € F2"|d(b,c) < t}.
Minimum distance decoding decodes each element of these balls into the associated
codeword. Each ball contains |B(c, t)| = Zi,:o (1) elements. The total number of decodable
elements of the code 2¥|B(c, t)| should be strictly smaller than the bitstring space of size 2".
Hence the Hamming bound.

Also:

The [7,4, 3] Hamming code is a perfect code:

t
2’“2("):24><(1+7):24><23:27:2"
m=0 \

Shannon's noisy coding theorem

For each discrete, memoryless noise channel N, there is an associated number

C = max, I(X;Y) > 0, called the channel capacity such that: Ve > 0,VR < C, for large
enough n, there exists a code C C F,™ with encoding rate > R, an associated decoding
algorithm, such that the logical block error probability is < ¢.

If bitflip probability py is acceptable (1 — Ha(py) > C), rates up to R(py) = C/(1 — Ha(ps))
Rates above R(py) are not achievable

Low density parity check codes

Discovered by Gallager in the 1960s but rediscovered in the late 90s.
Properties of LDPC codes:

Good minimum distance
Simple iterative decoding schemes

Relative low error floors.

A LDPC code is a code who's parity check matrix is sparse. Each column and each row have
low number of ones compared to the number of zeros

A [ng4,n.]-regular LDPC code is a code whose parity check matrix is such that:

each row row is such that w(row) = n,

each row col is such that w(col) = nq
We have the condition: for a [n4, n.]-regular LDPC code with check matrix H € Z,

mXxn

with ngn = n.m

The Tanner graph of a regular LDPC code is such that it has bounded degree (by max(ng, n.),
in general and n4 for the data nodes and n. for the check nodes).

